Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation.
نویسندگان
چکیده
The capacity of inflammatory cell-derived matrix metalloproteinases (MMPs) to cleave tissue factor pathway inhibitor (TFPI) and alter its activity was investigated. MMP-7 (matrilysin) rapidly cleaved TFPI to a major 35-kDa product. In contrast, MMP-1 (collagenase-1), MMP-9 (gelatinase B), and MMP-12 (macrophage elastase) cleaved TFPI into several fragments including the 35-kDa band. However, rates of cleavage were most rapid for MMP-7 and MMP-9. NH(2)-terminal amino acid sequencing revealed that MMP-12 cleaved TFPI at Lys(20)-Leu(21)(close to Kunitz I domain and producing a 35-kDa band), Arg(83)-Ile(84) (between Kunitz I and II domains), and Ser(174)-Thr(175) (between Kunitz II and III domains). MMP-7 and MMP-9 cleaved TFPI at Lys(20)-Leu(21) with additional COOH-terminal processing. These MMPs did not cleave tissue factor (TF), factor VII, and factor Xa. Proteolytic cleavage by MMP-1, MMP-7, MMP-9, and MMP-12 resulted in considerable loss of TFPI activity. These observations indicate specific cleavage of TFPI by MMPs, which broadens their substrate profile. Co-localization of MMPs, TF, and TFPI in atherosclerotic tissues suggests that release of MMPs from inflammatory cell leukocytes may effect TF-mediated coagulation.
منابع مشابه
Expression of Matrix Metalloproteinase-2/9 and Tissue Inhibitor of Metalloproteinase-1/2 as Predictive Factors in Oropharyngeal Squamous Cell Carcinoma
Introduction: Metalloproteinases and their tissue inhibitors play an important role in the metastases formation. A multistage process of carcinogenesis requires the involvement of numerous enzymes and compounds that facilitate the expansion of tumor cells. The formation of metastases depends on both metalloproteinases and tissue inhibitors activation leading to the acti...
متن کاملStructural Overview Of Mammalian Zinc Metalloproteinases
Matrix metalloproteinases (MMP) are crucial for homeostasis (tissue remodelling and repair, bone growth, wound healing, etc.) and pathology (metastasis, angiogenesis, aneurysm rupture, etc.). Upregulated MMPs from macrophages are thus a two-edged sword, playing both defensive and aggressive roles. The related family of ADAMs (a disintegrin and a metalloproteinase) is sometimes overlooked becaus...
متن کاملRoles of matrix metalloproteinases in tumor metastasis and angiogenesis.
Matrix metalloproteinases (MMPs), zinc dependent proteolytic enzymes, cleave extracellular matrix (ECM: collagen, laminin, firbronectin, etc) as well as non-matrix substrates (growth factors, cell surface receptors, etc). The deregulation of MMPs is involved in many diseases, such as tumor metastasis, rheumatoid arthritis, and periodontal disease. Metastasis is the major cause of death among ca...
متن کاملInvited Review Role of matrix metalloproteinases in renal pathophysiologies
Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292: F905–F911, 2007. First published December 26, 2006; doi:10.1152/ajprenal.00421.2006.—Matrix metalloproteinases (MMPs) are a large family of proteinases that remodel extracellular matrix (ECM) components and cleave a number of cell surface proteins. MMP activity is regula...
متن کاملRole of matrix metalloproteinases in renal pathophysiologies.
Matrix metalloproteinases (MMPs) are a large family of proteinases that remodel extracellular matrix (ECM) components and cleave a number of cell surface proteins. MMP activity is regulated via a number of mechanisms, including inhibition by tissue inhibitors of metalloproteinases (TIMPs). Originally thought to cleave only ECM proteins, MMP substrates are now known to include signaling molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 35 شماره
صفحات -
تاریخ انتشار 2000